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1 Introduction

1.1 Overview of RNASeqGUI R package

This manual describes RNASeqGUI R package that is a graphical user in-
terface for the identification of differentially expressed genes from RNA-Seq
experiments.
R (http://cran.r-project.org/) is an open source object oriented lan-
guage for statistical computing and graphics. RNASeqGUI package includes
several well known RNA-Seq tools, available as command line in www.bioconductor.org.
RNASeqGUI main interface is divided into five sections. Each section is dedi-
cated to a particular step of the data analysis process. The first section covers
the exploration of the bam files. The second concerns the counting process of
the mapped reads against a gene annotation file (GTF). The third focuses
on the exploration of count-data and on data preprocessing, including the
normalization procedures. The fourth is about the identification of the differ-
entially expressed genes that can be performed by several methods, such as:
DESeq, DESeq2, EdgeR, NOISeq, BaySeq. Finally, the fifth section regards
the inspection of the results produced by these methods and the quantitative
comparison among them.

1.2 Other GUIs for RNASeq data analysis

This package was implemented following and expanding the idea presented in
[Villa-Vialaneix et al., 2013] and in http://tuxette.nathalievilla.org/?p=866&lang=en.
The idea of RNASeqGUI is similar to that one presented in [Wettenhall et al., 2004,
Sanges et al., 2007, Lohse et al., 2012, Pramana et al., 2013, Wettenhall et al., 2006,
Angelini et al., 2008] with specific attention on RNA-Seq data analysis. More-
over, RNASeqGUI is designed to facilitate RNA-seq work-flow analysis (via
its organization in several different sections and interfaces and via the inclu-
sions of numerous concise and clear vignettes) and also to facilitate the exten-
sibility of the GUI (via its software development organization that facilitate
the task of expanding and redesign its interfaces). In fact, it is extremely
easy to add new buttons that calls new functionalities. Therefore, a user
can customize RNASeqGUI interfaces for his own purposes and benefits by
adding the methods he needs mostly (for more details see Section 7 How to
customize RNASeqGUI: Adding a new button in just three steps).
Hence, we think that RNASeqGUI represents a useful and valid alternative
to other existing GUIs.
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1.3 Scope and availability

RNASeqGUI is an R package designed for the identification of differentially
expressed genes across multiple biological conditions. This software is not
just a collection of some known methods and functions, but it is designed
to guide the user during the entire analysis process. Moreover, the GUI is
also helpful for those who are expert R-users since it speeds up the usage of
the included RNA-Seq methods drastically. Current implementation allows
to handle the simple experimental design where the interest is on the exper-
imental condition, future work will cover complex designs.

RNASeqGUI is available at www.bioconductor.org

2 RGTK2 installation guide

RNASeqGUI package requires the RGTK2 graphical library [Lawrence et al., 2010]
to run. The installation process consists in two steps. The first depends on
the operating system (devoted to installation the GTK+ 2.0, an open-source
GUI tool written in C). The second regards the required R packages.

2.1 For Linux users

We tested RNASeqGUI on Ubuntu 12.04 (precise) 64-bit, Kernel Linux 3.2.0-37-
generic, GNOME 3.4.2.

1 - Open a terminal and type:

sudo apt-get update

sudo apt-get install libgtk2.0-dev

2 - Type:

sudo apt-get install libcurl4-gnutls-dev

3 - Type:

sudo apt-get install libxml2-dev

4 - Then, go to Section 3.
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2.2 For Mac OS users

1 - Install Xcode developer tools (at least version 5.0.1) from Apple Store (it is free).

2 - Install XQuartz-2.7.5.dmg from http://xquartz.macosforge.org/landing/

3 - Install GTK 2.24.17 X11.pkg from http://r.research.att.com .

4 - Then, go to Section 3.

2.3 For Windows users

1 - download gtk+-bundle 2.22.1-20101229 win64.zip from
http://ftp.gnome.org/pub/gnome/binaries/win64/gtk+/2.22/ .

2 - This is a bundle containing the GTK+ stack and its dependencies for Windows.
To use it, create some empty folder like C : \opt\gtk .

3 - Unzip this bundle.

4 - Now, you have to add the bin folder to your PATH variable. Make sure you
have no other versions of GTK+ in PATH variable. To do this, execute the follow-
ing instructions: Open Control Panel, click on System and Security, click on
System, click on Advanced System Settings, click on Environment Variables.
In the Environment Variableswindow you will notice two columns User variables

for a user name and System variables. Change the PATH variable in the System
variables to be C : \opt\gtk\bin .

5 - Then, go to Section 3.

3 RNASeqGUI installation

1 - Install R version 3.1.0 (2014-04-10) ”Spring Dance” from http://cran.r-project.org/

according to your operating system.

1 - Open R.

2 - Type

source("http://bioconductor.org/biocLite.R")

biocLite("RNASeqGUI")
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4 Quick start

If you have successfully gone through the installation you are ready to use RNASe-
qGUI, as follows.

1 - Open R.

2 - Type

library(RNASeqGUI)

in the R environment. Wait for the package to be loaded.

3 - Finally, type

RNASeqGUI()

After that, a dialog window, as that one shown in Figure 1, will appear and you
can start interacting with the program.

5 Structure of RNASeqGUI main interface

The RNASeqGUI main interface is divided into five Sections, as shown in Figure
1. Each section corresponds to a particular step of the RNA-Seq data analysis
work-flow. Each section contains one or more Graphical Interfaces that can be
called by clinking the corresponding button.
Inside each interface, there is a How to use this interface button that displays
a vignette to help the user to use the interface and there are several available func-
tionalities (also called functions or methods in the rest of the manual). Each
function takes specific inputs that can be numeric ones, strings or both and gen-
erate an output that can be a plot, a text file or both.
The sections of RNASeqGUI will be described one by one in the next sections of
this manual.

5.1 How to create a new project or select an existing
one

To start using RNASeqGUI, you must either create a new project by choosing a
name for it (suppose you choose as name MyProject) and then clicking on the
Create a New Project button or select an existing project by typing the name
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Figure 1: Sections of RNASeqGUI main interface

and then clicking on the Select this Project! button. The two cases are ex-
plained below.

1. In the first case, if you are using RNASeqGUI for the first time a directory
called RNASeqGUI Projects is created in your current working direc-
tory (type getwd() in the R environment to know where you are). In-
side RNASeqGUI Projects directory, a project folder is created with the
name chosen by you (in this case with the name MyProject).

At any moment, you can see or change your working directory with the fol-
lowing R commands, respectively.

getwd()

setwd("path/you/want/to/set")

The creation of RNASeqGUI Projects directory will only occur the first
time you start using RNASeqGUI. Subsequently, when you click the Create
a New Project button, RNASeqGUI checks whether theRNASeqGUI Projects

folder already exists in your working directory. If this folder, was already
created then RNASeqGUI does not create a copy of it and all the projects
you will create will be stored in it.

Now, inside RNASeqGUI Projects, you find MyProjects directory. In-
side this directory, three folders are automatically created, such as: Logs,
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Figure 2: An example of the file report.txt automatically created in Logs directory
at the creation of MyProject project. Note that the session information is included.

Figure 3: By clicking the Bam Exploration Interface button (in the red
cycle), the interface to explore bam files will be displayed.

Results, Plots.
In the Logs folder, a report.txt file is created to report all the actions
you perform and which parameters you use by performing those actions. A
session information that summaries all the versions of the used packages is
automatically written in the report.txt file (see Figure 2) at the creation
of the project and each time you star this project again.

2. In the second case, an existing project is selected, see Figure ??. RNASe-
qGUI checks whether the selected name already exists in the RNASeqGUI

Projects folder. If no project with the chosen name is found, a message
warns the user that the selected project does not exist.
When an existing project is restarted, RNASeqGUI continues to write in
the same report.txt file created previously.
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5.2 Bam Exploration Section

In the first section of the GUI, we find the Bam Exploration Interface (see
Figure 3) that can be easily called by clicking the corresponding button. In
this interface we find five different methods to explore the bam files: Read
Counts, Mean Quality of the Reads, Per Base Quality of Reads,
Reads Per Chromosome, Nucleotide Frequencies. Each of these func-
tions takes a folder name as input. This input folder must contain all the
bam files that the user wants to explore. To select the entire bam folder,
select just one bam file inside the bam folder you want to use. The entire
folder will be loaded. To use this interface you can also click on How to use
this Interface button and a vignette window will appear on the screen
describing the interface usage briefly.

• The Read Counts makes use of barplot function of the graphics
package. This function returns an histogram (as the one shown in Fig-
ure 26) showing the number of mapped reads in each bam file (stored in
the input folder) and a txt (tab-delimited) file summarizing the counts.

• TheMean Quality of the Readsmakes use of plotQuality function
of the EDASeq package [Risso et al., 2011]. This function returns a plot
showing the quality of each base of the reads averaged across all bam
files.

• The Per Base Quality of Reads makes use of plotQuality function
of the EDASeq package [Risso et al., 2011]. This function returns as
many box-plots as the number of bam files stored in the provided input
folder. Each box-plot shows the quality of the reads per each base.
This function makes use of bplapply function of the BiocParallel
package [Morgan et al., 2014] to parallelize the code in order to reduce
the execution time.

• The Reads Per Chromosome makes use of barplot function of
the graphics package. This function returns as many histograms as
the number of bam files stored in the provided input folder. Each
histogram shows the number of reads are present in each chromosome.
This function makes use of bplapply function of the BiocParallel
package [Morgan et al., 2014] to parallelize the code in order to reduce
the execution time.

• The Nucleotide Frequencies makes use of plotNtFrequency func-
tion of EDASeq package [Risso et al., 2011]. This function returns a plot
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Figure 4: Read Count Interface

showing the percentage of each nucleotide at each position of the reads.

Figures will be stored in folder Plots, tables in folder Results.

5.3 Count Section

In the second section of the GUI, you find the Count Reads function-
ality that takes four inputs (see Figure 4). The first input must be the
name of the folder containing the bam files we want to process. The second
input must be an annotation file in GTF format (General Transfer For-
mat). The third input specifies the count mode that can be one of the
following: Union, IntersectionStrict and IntersectionNotEmpty. The
fourth input is Ignore Strand? check-box that allows to perform a strand
specific counting task or not. The Count Reads button calls the function
summarizeOverlaps from the package GenomicRanges [Lawrence et al., 2013]
to obtain gene counts and returns a data-frame, as the one shown in Figure 5.
The first column of this data-frame represents the Gene Id, while the other
columns correspond to the names of the loaded bam files. The other entries
report the number of reads that have hit a particular gene for each sample (see
www.bioconductor.org/packages /release/bioc/vignettes/GenomicRanges/
inst/doc/summarizeOverlaps.pdf for more information about the count-
ing modes).

Read counting can be a very computational demanding task, especially for
large experiments with several samples and big alignment files. The R en-
vironment is not optimized from this point of view. Therefore, the count-
ing task can be problematic on standard PC with limited clock speed and
memory space. In this case, it could be beneficial either to process sam-
ples independently or to import count tables (in the format specified in
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Gene Id control 1 control 2 treated 1 treated 2
ENSG00000000003 455 463 583 598
ENSG00000000005 0 0 0 1
ENSG00000000419 1174 1210 1545 1533
ENSG00000000457 260 256 305 349
ENSG00000000460 550 607 709 741
....................... ..... ..... ..... .....
....................... ..... ..... ..... .....

Figure 5: An example of a count file with 20062 genes. The row names are
given by the Gene Id in the annotation file (gtf), the column names are given
by the alignment file names (the bam files)

Figure 6: Data Exploration Interface

Figure 5) in RNASeqGUI obtained from other tools, such as HTSeq-count
(www-huber.embl.de/users/anders/HTSeq/). Therefore, this function makes
use of bplapply function of the BiocParallel package [Morgan et al., 2014]
to parallelize the code in order to reduce the execution time.

5.4 Pre-Analysis Section

The third section of the GUI contains two interfaces: Data Exploration Inter-
face (see Figure 6) and Normalization Interface (see Figure 7). Both inter-
faces take an input count file that must be tab-delimited and must have the
structure shown in Figure 5. The rows represent genes ids and the columns
represent the samples.

5.4.1 Data Exploration Interface

In Data Exploration Interface there are twelve methods: Plot Pairs of
Counts, Plot all Counts, Count Distr, Density, MDPlot, Mean-
VarPlot, Heatmap, PCA, PCA3D, Component Histogram, Qplot
Histogram, Qplot Density.
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• ThePlot Pairs of Countsmakes use of plot function of the graphics
package. This function takes a count file as input (in txt or cvs format)
where the rows correspond to the gene ids and the columns correspond
to the samples. This function also takes two integers, one specifying
Column1 and the other specifying Column2 of the count file (see Figure
6) and plots the counts of sample in Column1 against the counts of
sample in Column2. Moreover, for this function it is possible to plot
either the raw counts or the log of the counts (we add 1 to each number
in the count file to avoid the problem of log(0) ).

• The Plot all Counts makes use of plot function of the graphics
package. This function takes a count file as input and produces all
possible plots that can be generated by each column in the file against
all the other columns. If the input text file has n columns then n(n−1)
plots will be produced. An example of this plot is shown in Figure 33.
For this function, the log check box does not change anything.

• The Count Distr makes use of boxplot function of the graphics
package. This function takes a count file as input and generates a
box plot showing the distribution of the counts for each column in the
file. An example of this plot is shown in Figure 31. Moreover, for this
function it is possible to generate the box plot either of the raw counts
or the log of the counts (we add 1 to each number in the count file to
avoid the problem of log(0) ).

• The Density makes use of density function of the stats package.
This function takes a count file, and a sample specified by an integer
in Column1 as input and produces a curve representing the density
function of the counts for the selected sample. The method is available
in two modes. By default the log of the counts (we add 1 to each
number in the count file to avoid the problem of log(0) ) will be used
to generate the density function. It is possible to uncheck this mode
by clicking in the log? check-box (see Figure 6).

• The MDPlot makes use of MDplot function of the EDASeq package
[Risso et al., 2011]. This function takes a count file and two integers
Column1 and Column2 and returns a plot showing the mean of the
two selected columns against their difference gene by gene. For this
function, the log check box does not change anything.

• The MeanVarPlot makes use of meanVarPlot function of the EDASeq
package [Risso et al., 2011]. This function takes a count file and returns
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a plot showing the mean of all columns found in the file against the
variance gene by gene. For this function, the log check box does not
change anything.

• The Heatmap makes use of heatmap function of the stats package.
This function takes a count file and an integer N in the How many genes
in the Heatmap? field. The function returns an heat-map of the Nth

most expressed genes (on average). The columns of the heatmap are
the samples, while the rows in the heat-map represent the gene ids of
the most expressed ones. An example of heat-map is shown in Figure
35. Moreover, for this function it is possible to generate the heatmap
either of the raw counts or the log of the counts (we add 1 to each
number in the count file to avoid the problem of log(0) ).

• The PCA makes use of prcomp function of the stats package. This
function takes a count file, a comma separated sequence of strings (e.g.:
a,b,c,d) indicating what are the labels for the legend, to be specified
in the field Factors (see Figure 6) and Legend position in PCA that
can be: topright, bottomright, topleft, bottomleft. The PCA function
returns the principal component analysis plot between the first two
components. An example of PCA plot is shown in Figure 34. For this
function, the log check box does not change anything.

• ThePCA3Dmakes use of scatterplot3d function of the scatterplot3d
package. This function takes the same inputs of the PCA function and
returns the 3D PCA plot between the first, the second and the third
principal component. For this function, the log check box does not
change anything.

• The Component Histogram makes use of screeplot function of
the stats package. This function takes a count file and returns an his-
togram showing the variance level of each component. For this function,
the log check box does not change anything.

• The Qplot Histogram makes use of qplot function of the ggplot2
package. This function takes a count file and and returns an histogram
showing the count level of each column in the count file. Moreover, for
this function it is possible to generate the histogram either of the raw
counts or the log of the counts (we add 1 to each number in the count
file to avoid the problem of log(0) ).

• The Qplot Density makes use of qplot function of the ggplot2 pack-
age. This function takes a count file and and returns a plot showing
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Figure 7: Normalization Interface

the density function of each column in the count file. Moreover, for this
function it is possible to generate the density either of the raw counts
or the log of the counts (we add 1 to each number in the count file to
avoid the problem of log(0) ).

5.4.2 Normalization Interface

The Normalization Interface (see Figure 7) includes four normalization pro-
cedures: RPKM, Upper Quartile, TMM, Full Quantile.

• RPKMmakes use of rpkm function of the NOISeq package [Tarazona et al., 2011].
This function takes a count file as specified in Figure 5 and returns a
count file with normalized numbers. This function performs the RPKM
[Mortazavi et al., 2008] normalization.

• Upper Quartile makes use of uqua function of the NOISeq package
[Tarazona et al., 2011]. This function takes a count file as specified in
Figure 5 and returns a count file with normalized numbers. This func-
tion performs the Upper Quartile [Bullard et al., 2010] normalization.

• TMMmakes use of tmm function of the NOISeq package [Tarazona et al., 2011].
This function takes a count file as specified in Figure 5 and returns a
count file with normalized numbers. This function performs the TMM
[Robinson et al., 2010] normalization.

• Full Quantile makes use of normalize.quantiles function of the
preprocessCore package. This function takes a count file as specified
in Figure 5 and returns a count file with normalized numbers. This
function performs the Full Quantile [Bolstad et al., 2003, Smyth et al., 2005]
normalization.

5.5 Data Analysis Section

This section contains the Data Analysis Interface shown in Figure 8 and
represents the core of RNASeqGUI. This interface includes five different sta-
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Figure 8: Data Analysis Interface

Figure 9: EdgeR interface

tistical methods to detect differentially gene expression such as: EdgeR,
DESeq, DESeq2, NoiSeq, BaySeq.

5.5.1 EdgeR

• The EdgeRmethod [Robinson et al., 2007, Robinson et al., 2008, Robinson et al., 2010,
McCarthy et al., 2012] (see Figure 9) takes an input count file (as the
one shown in Figure 5) via the Open button and returns two text files
and two plots.

The first text file shows the overall result obtained by edgeR (see Fig-
ure 10), while the second text file extracts the subset of differentially
expressed genes only (see Figure 11).

The output count file is saved with the name specified by the user in
the Name? field (see Figure 9).
If no name is specified by the user, then the first output count file is
named with the name of the input file plus “ results EdgeR.txt” suf-
fix. The second file is named with the name of the input file plus
“ fdr=0.05 DE genes EdgeR.txt” suffix, where 0.05 is the chosen FDR.
Both text files are saved in the Results folder.

The first plot shows the Biological Coefficient of Variation for a given
CPM (Count Per Million) and is named with the name of the input
file plus “ Dispersion EdgeR.pdf” suffix. The second plot shows the
relative similarities of the samples and is named with the name of the
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id logFC logCPM PValue FDR
ENSG..003 0.023 9.181 0.736 1
ENSG..005 2.357 1.058 1 1
ENSG..419 0.072 10.003 0.178 0.571
ENSG..457 -0.043 8.418 0.612 0.966
ENSG..460 -0.0006 9.164 1 1
ENSG..938 2.5e-15 0.888 1 1
ENSG..971 0.078 1.472 1 1
............. ..... ..... ..... .....
............. ..... ..... ..... .....

Figure 10: The first text file produced by the EdgeR method. The first
column reports the gene ids, logFC reports the log of the fold-changes, logCPM
reports the the log of the counts per million, PValue reports the p-values
and FDR reports the false discovery rates calculated by the Benjamini and
Hochberg’s algorithm.

id logFC logCPM PValue FDR
ENSG..3756 -0.151 10.652 0.001 0.035
ENSG..4777 -0.523 8.455 2.6e-10 4.3e-08
ENSG..5961 -0.506 6.340 0.002 0.049
ENSG..6025 -0.577 8.699 2.8e-14 7.1e-12
ENSG..6047 -0.627 6.027 0.001 0.027
ENSG..6118 -0.152 10.456 0.001 0.039
ENSG..6282 -0.418 9.966 1.0e-14 3.3e-12
............. ..... ..... ..... .....
............. ..... ..... ..... .....

Figure 11: The EdgeR second text file showing the differentially expressed
genes only. Columns are the same as in Figure 10.
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Figure 12: DESeq interface

input file plus “ MDS EdgeR.pdf” suffix. Both plots are saved in the
Plots folder.

5.5.2 DESeq

• The DESeq method [Anders et al., 2010] (see Figure 12) takes an in-
put count file (as the one shown in Figure 5) via the Open button and
returns two text files and a plot.

The first text file shows the results of this method (see Figure 13), while
the second text file shows the differentially expressed genes only.

The output count file is saved with the name specified by the user in
the Name? field (see Figure 12).

If no name is specified by the user, then the first output count file
is named with the name of the input file plus “ results DESeq.txt”
suffix.

The second file is named with the name of the input file plus
“ padj=0.05 DE genes DESeq.txt” suffix, where 0.05 is the chosen p-
value adjusted.

Both text files are saved in the Results folder. The generated plot
shows the dispersion value for a given mean of normalized counts.

This plot is named with the name of the input file plus “ Dispersion DESeq.pdf”
suffix and it is saved in the Plots folder.

5.5.3 DESeq2

• The DESeq2 method [Anders et al., 2010] (see Figure 14) takes an
input count file (as the one shown in Figure 5) via the Open button and
returns two text files and three plots.
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id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

ENSG...0003 625.025 630.902 619.147 0.981 -0.027 0.774 1
ENSG...0005 0.264 0.528 0 0 -Inf 0.985 1
ENSG...0419 1106.882 1136.118 1077.646 0.948 -0.076 0.297 0.935
ENSG...0457 367.367 362.361 372.374 1.027 0.039 0.744 1
ENSG...0460 617.493 618.055 616.931 0.998 -0.002 0.982 1

.... ..... ..... ..... ..... ..... ..... ...

.... ..... ..... ..... ..... ..... ..... ...

Figure 13: DESeq output. The first column reports the gene ids, baseMean
reports the mean normalised counts, averaged over all samples from both
conditions, baseMeanA reports the mean normalised counts from condition
A, baseMeanB mean normalised counts from condition B, foldChange re-
ports the fold changes from condition A to B, log2FoldChange reports the
logarithm (to basis 2) of the fold changes, pval reports the p values for the
statistical significance and padj reports the p values adjusted for multiple
testing calculated by the Benjamini-Hochberg algorithm.

Figure 14: DESeq2 interface
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id baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000000003 625.025 -0.025 0.079 -0.318 0.750 0.954
ENSG00000000005 0.264 -0.014 0.020 -0.675 0.499 0.911
ENSG00000000419 1106.882 -0.072 0.062 -1.174 0.240 0.768
ENSG00000000457 367.367 0.035 0.095 0.365 0.714 0.937
ENSG00000000460 617.493 -0.002 0.079 -0.033 0.973 0.994
....................... ..... ..... ..... ..... ..... ....
....................... ..... ..... ..... ..... ..... ....

Figure 15: DESeq2 output. The first column reports the gene ids, baseMean
reports the base mean over all rows, log2FoldChange reports the logarithm
(to basis 2) of the fold changes, lfcSE reports the standard errors, stat
reports the Wald statistic, pval reports the p values for the statistical signif-
icance and padj reports the p values adjusted for multiple testing calculated
by the Benjamini-Hochberg algorithm.

The first text file shows the results of this method (see Figure 13), while
the second text file shows the differentially expressed genes only.

The output count file is saved with the name specified by the user in
the Name? field (see Figure 14).

If no name is specified by the user, then the first file is named with the
name of the input file plus “ results DESeq2.txt” suffix. Both text
files are saved in the Results folder.

The second file is named with the name of the input file plus
“ padj=0.05 DE genes DESeq2.txt” suffix, where 0.05 is the chosen
adjusted p-value for rejection.

The first plot shows the dispersion value for a given mean of normalized
counts and it is named with the name of the input file plus
the “ Dispersion DESeq2.pdf” suffix.

The second plot shows the dispersion mean value for a given mean of
normalized counts and it is named with the name of the input file plus
the “ Dispersion Mean DESeq2.pdf” suffix.

The third plot shows the dispersion local value for a given mean of
normalized counts and it is named with the name of the input file plus
the Dispersion Local DESeq2.pdf suffix.

All plots are saved in the Plots folder.
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Figure 16: NoiSeq Interface

5.5.4 NoiSeq

• The NoiSeq [Tarazona et al., 2011] method (see Figure 16) takes an
input count file (as the one shown in Figure 5) via the Open button and
returns two text files.

The first text file shows the results of this method (see Figure 17),
where M is the log2 ratio of the two conditions. The second text file
shows the differentially expressed genes only.

The first file is named with the name of the input file plus “ results Noiseq.txt”
suffix.

The output count file is saved with the name specified by the user in
the Name? field (see Figure 16).

If no name is specified by the user, then the second file is named with
the name of the input file plus
“ prob=0.8 DE genes Noiseq.txt” suffix, where 0.8 is the chosen pos-
terior probability for rejection.

Both text files are saved in the Results folder.

Both plots are saved in the Plots folder.

5.5.5 BaySeq

• The BaySeq [Hardcastle et al., 2010] method (see Figure 18) takes an
input count file (as the one shown in Figure 5) via the Open button, a list
of factors (e.g. treated,treated, control,control) in the Factors?
field, a NDE list (e.g. 1,1,1,1), a DE list (e.g. 1,1,2,2), an Estimation
Type? (e.g. quantile), the SampleSize (e.g. 1000), an FDR level,
SampleA (e.g. treated) and SampleB (e.g. control).

The BaySeq function returns two text files and two plots.
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id control mean treated mean M D prob ranking
ENSG00000000003 575.05 582.71 -0.019 7.659 0.104 -7.659
ENSG00000000005 0.22 0.47 -1.083 0.251 0.037 -1.112
ENSG00000000419 1000.84 1049.17 -0.068 48.333 0.405 -48.333
ENSG00000000457 345.75 334.47 0.047 11.275 0.164 11.275
ENSG00000000460 572.81 570.80 0.005 2.004 0.028 2.004
....................... ..... ..... ..... ..... .... ....
....................... ..... ..... ..... ..... .... ....

Figure 17: NoiSeq result file. The first column reports the gene ids,
control mean is the mean across the control samples, treated mean is the
mean across the treated samples, M is the log2-ratio of the means of the two
conditions) and D is the difference between the two conditions means, prob is
the probability of differential expression, the ranking is a summary statistic
of M and D values (equal to −sign(M)×

√
M2 +D2).

Figure 18: BaySeq Interface

id rowID control 1 control 2 treated 1 treated 2 Likelihood FDR.DE

ENSG..971 row 7 1 1 1 1 0.261 0.738
ENSG..419 row 3 1132 1070 1088 1138 0.217 0.760
ENSG..457 row 4 354 348 392 377 0.111 0.803
ENSG..003 row 1 633 590 618 661 0.074 0.833
ENSG..460 row 5 618 580 653 621 0.067 0.853
ENSG..005 row 2 0 1 0 0 0.051 0.869

...... ... ... ... ... ... .... ....

...... ... ... ... ... ... ... ....

Figure 19: BaySeq result file. Bayseq reports the input counts and the
number of the row (rowID) in the first columns and the Likelihood and the
false discovery rate (FDR.DE) in the remaining columns.
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Figure 20: Result Inspection Interface

The first text file shows the results of this method (see Figure 19), while
the second text file shows the differentially expressed genes only.

The output count file is saved with the name specified by the user in
the Name? field (see Figure 18).

If no name is specified by the user, then the first file is named with the
name of the input file plus “ results BaySeq.txt” suffix. Both text
files are saved in the Results folder.

The second file is named with the name of the input file plus
“ fdr=0.05 DE genes BaySeq.txt” suffix, where 0.05 is the chosen
FDR for rejection..

The first plot shows the log ratios of the counts against the mean aver-
age of the counts and it is named with the name of the input file plus
the PlotMA BaySeqNB.pdf suffix.

The second plot shows the posterior likelihood. This plot is named
with the name of the input file plus the Posteriors BaySeqNB.pdf
suffix.

This method is very time consuming.

5.6 Post Analysis Section

In the fifth section of the GUI, called Post Analysis Interface, there are
two interfaces: Result Inspection Interface (see Figure 20) and Result
Comparison Interface (see Figure 22). The first interface includes the
possibility to generate several plots for each methods. The second allows to
compare the outcomes obtained from several methods.
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Figure 21: Result Inspection Interface after clicking all the five buttons at
the top.

5.6.1 Result Inspection Interface

To explore the results of a specific method, we have to click on the used
method in Data Analysis Section (say EdgeR) and the interface in Figure
20 will display the functions available for the selected method (for EdgeR
Plot FC, FDR Hist, P-value Hist functions are available). If we click all
buttons in Figure 20, the interface will grow and we get the interface shown
in Figure 21.

Therefore, for each method, we have Plot FC, FDR Hist (or P-value
Hist) and Volcano Plot functions, except for the BaySeq method since
this method already provides an MAplot and a PosteriorPlot during the
analysis process that can be run in the BaySeq Analysis Interface.
For each function (e.g.: FDR Hist, P-value Hist, Likelihood Hist) of
each method, we just need to provide a “full result” file placed in theResults
folder. For Volcano Plot and Plot FC functions, we must provide a path
to a “full result” file (as the one shown in Figure 10) and a FDR, P-value or
Prob value (it depends on the chosen method) to point out the differentially
expressed genes (shown in red). In this case, it is also possible to provide a
gene id, provided into the Gene Id field, to point out that particular gene in
the Volcano or FC plot (that gene will be displayed in green).
All generated plots are saved in pdf format in the Plots folder.

5.6.2 Result Comparison Interface

The second interface includes the possibility to generate Venn diagrams of
either two or three result text files (See Figure 22).
The user must provide two or three text files reporting the results of the
used methods and the corresponding labels to recognize these files in the
generated diagrams.
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Figure 22: Result Comparison Interface

A Venn diagram is generated and saved in the Plots folder. Moreover, a
text file (showing the gene ids belonging to the intersection of the selected
methods) is created and saved in the Results folder.

5.7 The summary report

All the functionalities used by the user are automatically saved in a report
file (as the one shown in Figure 2) inside the Logs directory of the user
project. This report reports the session information that describes all used
package versions by RNASeqGUI at the time of the project creation, along
side with the name of the project, time, date and the parameters (fdr, padj,
etc.) the user selected during the usage of the GUI.
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6 Usage Example

We can start using RNASeqGUI by downloading the example data at
http://bioinfo.na.iac.cnr.it/RNASeqGUI/Example.

We download the folder called example RNASeqGUI.tar.gz, we extract
this bundle and open it. Inside this, we find a folder called demo, a gtf file
called 2L Drosophila melanogaster.BDGP5.70.gtf and a text file called
README.txt file.

6.1 Data Preparation

In this usage example, we start the analysis of the RNA-Seq data from bam
files and we compare the results of EdgeR, DESeq and NOISeq against each
other.
We downloaded the dataset published by [Brooks et al., 2011]. This dataset
has already been used in [Anders et al., 2013] as a real data working example.
We downloaded the data from http://www.ncbi.nlm.nih.gov/sra?term=SRP001537
by following the instructions described in [Anders et al., 2013] at the page
1771. The entire experiment is available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18508.

The dataset consists of seven samples. Three samples represent the response
to a treatment and four samples are controls. Each sample is a cell cul-
ture of Drosophila melanogaster (For more details about this experiment see
[Brooks et al., 2011]).

We downloaded and aligned the fastq files by running tophat2 [Kim et al., 2013]
as described in [Anders et al., 2013] at page 1774. Once the bam files were
obtained (we called them CG8144 RNA-1, CG8144 RNA-3, CG8144 RNA-4,
Untreated-1, Untreated-3, Untreated-4, Untreated-6 as in in [Anders et al., 2013]),
it is possible to perform the analysis with RNASeqGUI.

For illustrative purpose and for keeping the computational cost of the
demonstrative example under control, we limit our attention to chromosome
2L. Alignment data (bam files) are contained in the folder called demo inside
the Bam folder, with the following names: 2L 1.bam, 2L 3.bam, 2L 4.bam,
2L U1.bam, 2L U3.bam, 2L U4.bam, 2L U6.bam (see Figure 23).

27

http://bioinfo.na.iac.cnr.it/RNASeqGUI/Example


BamFileName NameOfTheReducedBam LibraryType LibraryLayout
CG8144 RNA-1 2L 1 treated single
CG8144 RNA-3 2L 3 treated paired
CG8144 RNA-4 2L 4 treated paired
Untreated-1 2L U1 untreated single
Untreated-3 2L U3 untreated paired
Untreated-4 2L U4 untreated paired
Untreated-6 2L U6 untreated single

Figure 23: Experimental design

6.2 Usage of RNASeqGUI

We open R, then we type

library(RNASeqGUI)

and we type

RNASeqGUI()

Once the main RNASeqGUI interface (see Figure 1) has appeared on the
screen, we create a new project (for instance, we can call it demoProject)
and then we click on Bam Exploration Interface button. We select the
demo folder with the Open button. After that, we start the analysis by us-
ing the Read Counts button in the Bam Exploration Interface. This action
creates the plot shown in Figure 26. The bam files in the demo folder are
loaded in alphabetically order and their name are displayed at x axis in Fig-
ure 26 alphabetically. This plot is automatically saved in pdf format in the
Plots folder of the project you selected.

A text file is also generated and saved in theResults folder with the demo Read
Count.txt name, as shown in Figure 27. This file shows the number of reads
for each bam file.

Critical: We cannot use the Mean Quality of Reads or Per Base Quality of Reads function for this dataset, since the

2L 1.bam file was generated by pulling fastq files containing reads of different length (This file correspond to CG8144 RNAi-1

at page 1774 of [Anders et al., 2013]). To use these functions, we need bam files containing reads of the same length.

Otherwise, we get the following error:

Error in as.vector(x, "character"): cannot coerce type ’environment’ to vector of type ’character’.
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Figure 24: Mean Quality of Reads of the bam files stored in the folder
demo without the 2L 1.bam file.

Figure 25: Per Base Quality of Reads of the bam files stored in the folder
demo without the 2L 1.bam file.

If the user wants to use these functions, in this case the 2L 1.bam file must be temporary removed from the demo folder

before using them. In this case, if we use those functions without the 2L 1.bam file, we get the plots in Figure 24 and in

Figure 25, respectively.

Subsequently, we click on Read Count Interface and select the bam folder
demo and the 2L Drosophila melanogaster.BDGP5.70.gtf annotation file.
We select Union as Counting Mode and check the Ignore Strand box, as
shown in Figure 28. Hence, we click on Count Reads button. As result of
this action, a text file named 2L counts.csv (see Figure 29) is generated and
saved in the Results folder. A file named counts.txt is also generated in
case the user forgets to use the Save Results? check-box at the bottom of
the interface. The column names in Figure 28 follow the alphabetical order
of the bam files placed in the demo folder.

Now, we can explore the obtained count file, shown in Figure 29.

We click on Data Exploration Interface button. Once this interface has ap-
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Figure 26: Read Count Histogram of the bam files stored in the folder demo.

fileName NumberOfReads
../Data/Bam/demo/2L 1 12320205
../Data/Bam/demo/2L 3 6477978
../Data/Bam/demo/2L 4 7741241
../Data/Bam/demo/2L U1 9473462
../Data/Bam/demo/2L U3 6586330
../Data/Bam/demo/2L U4 6071744
../Data/Bam/demo/2L U6 5883666

Figure 27: The demo ReadCount.txt file saved in the Results folder.

Figure 28: Read Count Interface.
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id 2L 1 2L 3 2L 4 2L U1 2L U3 2L U4 2L U6
FBgn0000018 528 485 546 613 441 501 485
FBgn0000052 2300 2968 3555 2921 3097 3244 2626
FBgn0000053 2361 2982 3790 2307 2352 2542 1856
FBgn0000055 1 0 0 0 0 0 0
FBgn0000056 0 0 0 0 0 0 0
FBgn0000061 4 2 2 1 1 5 0
FBgn0000075 2 2 1 4 4 3 1
FBgn0000097 3849 3727 4546 4656 4227 3448 2569

.... .... .... .... .... .... .... ....

.... .... .... .... .... .... .... ....

Figure 29: The 2L counts.csv file created by Count Reads function and
saved in the Results folder.

peared on the screen (see Figure 30), we select the 2L counts.csv file.

First, we use the BoxPlot and the Plot All Counts functions by clicking
the corresponding buttons (see Figure 30). The generated plots are shown in
Figure 31 and Figure 33, respectively. From Figure 31, we can see that all the
count means (the black lines in the box plot) and all the count distributions
are almost aligned. Therefore, we decide not to normalize the counts since a
normalization procedure does not seem to be necessary.
To better understand whether a normalization procedure is needed, we can
also use the MDPlot by plotting each sample counts (by selecting Column1
and Column2 fields) against all the other sample counts.
Anyway, if we use the full quantile normalization procedure by clicking the
Full Quantile button in the Normalization Interface, we get the plot show
in Figure 32 and a text file of normalized counts saved in Results folder.

Subsequently, we use the PCA function by typing the 1,3,4,U1,U3,U4,U6
sequence in the PCA Factors? field (see Figure 30) to specify the labels that
will be displayed in the legend at the top-right of the plot generated by this
function (shown in Figure 34).

Finally, we can use the HeatMap function to see what are the first (say
thirty) most expressed genes. Therefore, we typed the number 30 in the How
many genes in the Heatmap? field (see Figure 35). From the heatmap, we
can notice that the the most expressed gene is the one called FBgn0000559
(look at the bottom of the Figure 35).
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Figure 30: Data Exploration Interface

Figure 31: Box plot generated by the BoxPlot function.

Now, we can start with the analysis. We decide to use EdgeR, DESeq and
NOISeq and compare the results among them.

We click on Data Analysis Interface button.

We start the EdgeR analysis by clicking on the EdgeR button. In the EdgeR
Analysis Interface, we select the 2L counts.csv count file.
We type the T,T,T,U,U,U,U sequence in the Factors? field to specify which
are the treated samples (called T) and which are the untreated ones (called
U) as reported in Figure 23. We choose a 0.05 value as the FDR. Finally, we

Figure 32: Boxplot of the counts shown in Figure 31 after the full quantile
normalization.
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Figure 33: Count plots generated by the Plot All Counts function.

Figure 34: PCA plot generated by the PCA function.

Figure 35: Heatmap
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click on Run EdgeR button. The EdgeR analysis is performed and two
result text files are created and saved in the Results folder.

We click on DESeq button. In the DESeq Analysis Interface, we select
the 2L counts.csv count file. We type the T,T,T,U,U,U,U sequence in the
Factors? field to specify the treated and untreated samples as in EdgeR
analysis. We type single-end,paired-end,paired-end,single-end,pair
ed-end,paired-end,single-end in the LibTypes field to specify the library
layout as reported in Figure 23. We choose a 0.05 value as the Padj. Finally,
we click on Run DESeq button. The DESeq analysis is performed and two
result text files are created and saved in the Results folder.

We click on NOISeq button. In the NOISeq Analysis Interface, we select
the 2L counts.csv count file. We type the T,T,T,U,U,U,U sequence in the
Factors? field. We type T1,T3,T4,U1,U3,U4,U6 in the TissueRun field to
specify the library layout as specified in Figure 23. We select biological in
the Replicate? field. We choose a 0.6 value as the prob. Finally, we click
on Run NOISeq button. The NOISeq analysis is performed and two result
text files are created and saved in the Results folder.

Once all the results have been obtained, we can start inspecting them by
clicking on Result Inspection Interface. We click on EdgeR, DESEq and
NOISeq buttons at the same time. At each click we can see the Result
Inspection Interface growing (see the top-right of the Figure 36).

For each method, we select the corresponding result file (by giving the all
path to the file in the Select File field) and we click on Plot FC on FDR
Hist and on Volcano Plot of each method. We also provide a gene id to
display a specific gene (in this case we type FBgn0000559 in the Gene Id
field, as shown in Figure 36, that is the most expressed gene found in the
heatmap in Figure 35).

Finally, we compare the results by clicking on Result Comparison Interface.

We fill all the fields as shown in Figure 37. We click onVennDiagrams3setsDE
button. This action creates two files. The first file is the pdf shown in
Figure 38 and saved in Plots folder. The second file is a text file, called
NOISEQ DESEQ EDGER genes in intersection.txt and saved in theResults
folder. This text file reports the 86 gene-ids that fall in the intersection of
all the three methods (see in Figure 38).

All the functionalities we have used are automatically saved in a report
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Figure 36: Fold Change Plot generated by using the function PlotFC of
EdgeR

Figure 37: Result Comparison Interface

Figure 38: Venn Diagram
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file inside the Logs directory.
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7 How to customize RNASeqGUI

It is extremely easy to add new buttons that calls new functions. Hence, a
user can customize RNASeqGUI interfaces for his purposes and benefits by
adding the methods he needs mostly.

7.1 Adding a new button in just three steps

For the sake of example, suppose you have written a function that generates
a heat-map as the one written below.

MyHeatmap <- function(x,geneNum){
require(RColorBrewer)
n <- as.numeric(geneNum)
x <- as.matrix(x)
means=rowMeans(x)
select = order(means, decreasing=TRUE)[1:n] # show first n genes
hmcol = colorRampPalette(brewer.pal(7,"Greens"))(100)
heatmap(x[select,],col=hmcol,margins=c(5,8),main="MyHeatMap")

}

If you want to add MyHeatmap function to RNASeqGUI, follow these tree
simple steps.

1 - Place MyHeatmap function in a file (for instance, called MyHeatmap.R)
in the R folder inside the RNASeqGUI directory.

2 - Open calculateGUI1.R file (This is the file that generates the Data Ex-
ploration Interface) and copy the following 3 lines and paste them at the
bottom of this file before “}” parenthesis.

#Here you create the button, called "MY OWN FUNCTION"
MYOWNBUTTON <- gtkButtonNewWithMnemonic("MY OWN FUNCTION", show = TRUE)
#Associate the button to MyHeatmapConn that calls MyHeatmap function
gSignalConnect(MYOWNBUTTON , "clicked", MyHeatmapConn)
the.buttons$packStart(MYOWNBUTTON,fill=F)

3 - Finally, Copy the following code

MyHeatmapConn<- function(button, user.data) {
res <- NULL
# Get the information about data and the file
the.file <- filename$getText()
the.sep <- sepEntry$getText()
the.headers <- headersEntry$active
the.geneNum <- geneNum$getText()
d <- read.table(the.file,sep=the.sep,header=the.headers,row.names=1)
# Select numerical variables
numVar <- sapply(1:ncol(d),function(x){is.numeric(d[,x])})
if (sum(numVar)==0) { error <- "ERROR: No numerical variables in the data!"
}else{res=MyHeatmap(d,the.geneNum)} #HERE YOU CALL THE FUNCTION YOU DEFINED!

}

37



Figure 39: A new button called MY OWN FUNCTION is created

and paste it before the two following lines below that are written inside the
calculateGUI1.R file.

# Create window
window <- gtkWindow()

At this point, MY OWN FUNCTION button is created and the result is the one
shown in Figure 39. By clicking this button, we call MyHeatmapConn function
that calls MyHeatmap function defined before.
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Figure 40: Session Info

8 Technical Details

To see the versions of the used methods, we type

sessionInfo()

and we get the list shown in Figure 40.
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